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A number of papers have been published on the question of finding rela-
tions between the solutions of the plane and axisymmetric problems of the
theory of elasticity and the use of these relations for solving axisym-
metric problems.

In[1,2], weber has suggested the use of integral transformations
for the transfer from stress functions of the plane state to stress func-
tions of an axisymmetric state, and vice versa (in these cases the bound-
ary conditions are transformed; Weber, together with other authors, does
not indicate what the boundary
conditions of the initial
Pi = &L, 7 ﬁ} - state should be in order to
obtain the given conditions
for the state to which the
transfer takes place). Trans-
fer from a plane to an axisym-
metric state of a space by
means of superposition is
illustrated in [3 ], and
Papkovich [ 4 ] has pointed
out the analogy between the
solutions of the plane and
Fig. 1. axisymmetric problems. In[5]
Mossakovskii has derived a
solution to the axisymmetric
problem for a half-space by using analytic functions of a complex vari-
able. Goletskii [ 6 ] has investigated the analogy between plane and axi-
symmetric problems for regions bounded by concentric circles and
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1362 A.Ta. Aleksandrov

spherical surfaces, respectively. In[7,8 ] Polozhii considers the appli-
cation of analytic functions to axisymmetric problems and establishes
reversible integral transformations of axisymmetric and plane states of
stress. Mustafaev ]9 ] has investigated certain cases of transfer by
means of the Weber method. Chemeris [ 10 1 has obtained an integral equa-
tion with the aid of the results of Polozhii for the axisymmetric prob-
lem with given displacements. In [ 11 ], Belen'kii gives solutions to some
axigsymmetric problems with the aid of integral presentations and func-
tions of a complex variable.

In the present paper relations are derived between the plane and axi-
symmetric states of stress for an infinite plate, and the state of plane
stress is determined which after transfer gives an axisymmetric state
with known boundary conditions,

These relations enable the solution of axisymmetric problems for
volumes of revolution of arbitrary shape to be reduced to the determina-
tion of two analytic functions from two integral equations [ 12-14 1.

We shall adopt the notation that all quantities referring to a state
of plane stress will be distinguished by the suffix || and those referring
to & state of axisymmetric stress by the suffix °.

1. An infinite plate. 1. The relation between the plone and axisym-
setric states derived by rotation of the plane state. Let us suppose
that an infinite plate of isotropic or transversely isotropic material
with its axis of elastic symmetry parallel to the :z-axis is in a state
of deformation which is symmetrical with respect to the yz-plane and
which is caused by the action of vertical and horizontal loads Q and P
(Fig. 1, left). By rotation of the loads acting on the plate through an
angle m about the z-axis, we obtain a transformed axisymmetric state.

It can be shown (for example, by replacing the loads @ and P by loads
pniformly distributed over elements of area of the type shown hatched in
Fig. 1, and taking into account the superposition which takes place with
rotation of the loads) that in the transformed axisymmetric state loads

(Figs. 2 and 3)

2Q 2aP
ﬂ@zm, p(9}=;7P—2—_=a2 (p=0a) (1)

q(p) = p(p) =0 (p<Ca)

will correspond to Q and P, which in the case of a plane state are dis-
tributed along two lines parallel to the y-axis.

In the case when Q = Q(a), P = P(a) for a; < a<w and Q= P =0 for
0< a< ap, we have
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The components of the transformed axisymmetric state are given by the
integrals
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Here o0y (=, 2), 0,(z, 2), Oy (2, 2), Ty (& 2), v (z,. 2), u(x, z) are the
stresses and displacements for the plane state, z= r cos 6. If the plate
is isotropic cyu==v(cﬂ +—oﬂp,and if it is transversely isotropic

Oy =" c'xn-%-vzx ¥ Vag Vax being Poisson’s ratios.

Instead of integrating with respect to 0, let us now integrate with
respect to x. Relations (1.3) then become

r r
. - dx * dz
6°+0’°=:S (o +o0 o, C‘ozg O ———eeme
r 8 2 i i 'Vrg__ g z 3 2]l sz—" o
r r
* * 242 — r? dx - T dx
OG0 — Ogo = 0,y —0G,.) — T,.,0 = Ty =~ (1,4)
r 8 S ) yll r) = rz S x2|) -
2, r VriE—z 2. rYE
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If the effect of temperature has to be taken into account, the thermal
expansions for the plane and axisymmetric states are related by the ex-
pression

kT, =

e xR

og_/-.aq

KT\do = 2 ( KTy 2E (1.5)
o ¥

Here TM(x,z),To(r,z) are the temperatures for the plane and axisym-
metric states, k is the coefficient of linear expansion, which can be
constant or can depend on the temperature., Analogous relations can be
derived in other cases which admit the principle of superposition (for
instance, dynamic problems),

The relations derived above enable us to determine the loads (or
other conditions on the surfaces of or within the plate) for the plane
state, which, after transfer to the axisymmetric state by the method de-
scribed, give the known loads (or other conditions) for the axisymmetric
state,

If, for example, the loads for the axisymmetric state q¢(p) and p(p)
are given, we can solve Equationms (1.2) for the functions Q(a) and P(a)
(by use of the substitutions u = p“2 and v = o ° these equations become
equations of the Abel type) and find the loads for the plane state, which
after rotation give the known axisymmetric loads

(a0 < a < o0)

1@ pdp 19
Q(a)“'};g“g Q(P)Va —«p s P (a) Ea—Sp(p)Va—-p*

Qa) == Pla) =0 (0<a<ay) {1.8)

If the boundary conditions for the axisymmetric problem are given in
terms of displacements, then by an analogous process we find that

X

x
i a ridr { 6& rdr
Uy = e e \ Uy e, W, — - VW, —— (17)
f nxaxé Vaz—re Lo ‘VaE—r
In the case of a thermal expansion problem
X

kT{l:ié‘szTc_‘fi__. (1.8)

F1d x@ ]/'xz___,.a

In order to solve an axisymmetric problem it is necessary to find
from (1.6) to (1.8) the loads, displacements on the boundary or other
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conditions of the corresponding plane state, to solve an auxiliary plane
problem and to find the stresses and displacements for this state. After
substitution of these stresses and displacements into (1.4) and (1.5) we
can determine the stresses and displacements for the required axisymmetric
state.

It should be noted that with the described method of superposition by
rotation of the plane state, it is not possible to obtain any axisym-
metric state, 1.e. for certain forms of axisymmetric loading, Expressions
(1.6) to (1.8) do not enable us to obtain a corresponding real plane
state. If, for example, in the case of an axisymmetric state the loads P
and ¢ are applied on a circle (Fig. 1, right), it is not possible to de-
termine directly the loads of the corresponding plane state by means of
Expressions (1.86).

In this case we must either make use of another superposition de-
scribed in subsection 2, or we must perform certain additional operations.
For example, let us consider the axisymmetric state set up by loads g,
and p, uniformly distributed within the limits from p = a; to . With the
aid of Expressions (1.6) we find that in order to obtaln an axisymmetric
state with such loading we must rotate the plane state caused by loads

do a Do [ —1 @ %
Q(a):;}—/a——*—c—a},‘. p(a)=?:~(—2--—sin ;o+]7;2—_———702\) (a0 < a < o0)
Q{a) = Pla) =0 (a0 >a>0) (1.9)

Having evaluated the components of this plane state, we transfer by
means of Expressions (1.4) to an axisymmetric state (set up by loads ¢,
and py distributed as indicated above). Differentiating with respect to
a, the expressions for the components of the axisymmetric state so ob-
tained, and replacing gy and p, by Q and P, we find an axisymmetric state
caused by loads @ and P distributed over a circle of radius ay.

Note that another method can be used to find an axisymmetric state
with the loads P or ¢ acting on one circle (Fig. 1, right). Suppose that
gpolr, z, p), 99(r, z, p), 7 _o(r, z, p), 8g0(r, z, p) are components of
the required axisymmetric state, p is the radius of the circle on which
the loads are applied. The components of the axisymmetric state produced
by loads g¢(p) and p(p) distributed according to (1.1) can be expressed
in the form of the integrals appearing on the right-hand sides of Ex-
pressions (1.10) and (1.11). On the other hand, the components of this
state of stress a;o(r, z, @), 0®go(r, 2, @), ... can be cbtained by
rotation of the plane state as shown in Fig. 2-1 and evaluated from
Formulas (1.4). We then obtain:
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when the load @ is applied

o @Wa%} drazt
o‘:o (r, z, a) = S 0. (ry 2, p) — 2Q dp 3 {DDL pa)
a p*— a?
0 20 (1.10) GXE s Fh Y
Sgo (rs 2, @) S Gy (7, 2, D) - dp b, |Maz)fz,
i Vi —a " |
.................... p{l? nr
and when P is applied 2
o q
o;n (r, z, a) = & G0 (r, 2 0) __f2__a—-})—_—jdp
b pVer—a  (1.11) )
o » Pig. 4.
o';;, (r, z, a) = S Ogo (7, 2, P) «»-2—{2—— dp
by pVpt—a?

with the aid of the substitutions indicated earlier, Expressions
(1.10) and (1.11) can he reduced to Abel equations, the solutions of
which give:

when load @ is applied

. a (1.12)
8¢ a5.(r, 2, p) 2590 (2,
0,0 (r, 2, 0) = ?_a_& dp, G lr, z, a)=%‘.§_§ el e,
noa) oVei—a nda) oYpi—a

and when P is applied

(1.13)

2 90 ace(r. z, p)
2% aS re(riz, p dp, ...

2 () K a r ( )
2(1 Cpo (T 2, p
—— dpy 000 (‘ v %y a)"‘ g

0,0 (r, 2, a)= e —_—\ ———
r wpzvpz__az E aaéo p* Vpi—a?

2. The relation between the plane and axisymmetric states derived by
linear displacement of the axisymmetric state. Suppose that an infinite
plate of isotropic or transversely isotropic material with the elastic
axis parallel to the z-axis is in an axisymmetric state caused by the
action of vertical and radial loads Q and P (Fig. 1, right, and PFig.
2-4). By displacing the loads acting on the plate along the y-axis from
y=~0c to y=oc we obtain a certain transformed plane state.

It can be shown (for example, by replacing loads Q and P by loads uni-
formly distributed over elements of area of the type shown hatched in
Fig. 1, and taking into account the superposition which takes place with
displacement of the loads) that in the transformed plane state the loads
(Fig. 2-2)
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gt = Y R LA 14
Vz Va2 N < a) {1.14)

q(n)=p(n)=0 (n>a)

will correspond to loads Q and P, which in the axisymmetric state act on
one circle,

In the case when Q= ({(s), P = P(a) for 0 < a< c and Q= P = 0 for
> a> ¢

. v 2aQ(a) :;c 2nP (a)
q(n)—xw_nda, p ) imd“ (<o

gm=pm) =20 n>9

(1.15)

The components of the transformed plane state are given by the inte-
grals

oo o (1.16)
Oyt = S (0,. c0s20 ++ 6. 5in%20) dy, 0, = S (0,0 5in?8 + 0,0 cos?0) dy,
-—00 —00

[o0] [e.o] o oo
cw*z S%u@,%”*= Stmﬁmew,%*= Suwmﬁ@,mﬁz Sw“@
—_0 —00 —C0

QO

We replace the integrals with respect to y within the limits y = — o
and y = = by double integrals with respect to y within the limits y= 0
and y = «, and transfer from integration with respect to y to integra-
tion with respect to r. (The expression for dy can be found by partial
differentiation of the expression P y2 = r2, sin 6@ = y/r, cos Q=x/r)

Lol (o] d
— 2x% — r? __ rdr
Oy* = 0yy* =2 § G -0y yEea “2"*”23 Vo
x
o0
o\ rdr _ z dr
R R
x x
[o. ] o0
u,*.—:zguo,ﬁ’_ﬂ +=2{w, [”"" . (1.47)
¥ V=2 Y Vrt—x

If changes in temperature must be taken into account the thermal ex-

pansions for the axisymmetric and plane states are related by the expres-
sion

3 amp

o] Reel
KT * = S KT, dy = 2\ kT, _rdr (1.18)
—o0 x
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Analogous relations can be obtained for other cases which admit the
principle of superposition.

We will solve the first of Equations (1.17) for the components of the
axisymmetric state. We set g = r?, h= x%, multiply both sides of the
equation by (h - Hf_l/zdh, integrate them from H to B and, making use
of Dirichlet's formula, change the order of integration

By * B

B
" U" dh = th (50"‘*50 2h*-g dg
i Vh Sf N e (Y
B® g B? _
g dgg (2h —g) dh =S nH._’."i_.__dg
o s Ve—hVi—H g g

Returning now to the previous variables and differentiating both sides
with respect to r, carrying out the integration by parts and letting
B > o, we find that

r 8 B { 003(3 ¥om, 0 ® 22% 2
Gpo ~— Ggo = — _(3_{_’6&__,...__ sz_er m_g ] il S
T r? 7T dx Y a2
B-sco r r

The first term on the right-hand side can be expressed in the form

2 ..
;‘;ghm {x(cxn*——cw*)} as T - oo

After solving in an analogous way the remaining equations of (1.17)
and taking into account the manner in which the stresses decrease at in-

finity, we find that

oC
d(c,. *— * 2 2
Gro__%o:wig (e 1 ) 2t—r dz 4 £
noY x PV et 2 r
[ee)
1 Sacz”* de . 21'
o I e J = —1i1m O . n*— 0, n*
s T ox Vi — 2 ( ’ i x»mgx( xd vl )l
oo o0
I Mpiga(%u*"i"%;fz dz w mmigawn’__’_dx
A T ox 1/:,,2___,2’ ° nd Yo
[ee] [e.e]
Ty = — gy *  wds u :_}_S uy® zds (1.19)
rz® nJ ox rVaE— e ° n) 0 YR

If the vector sum of the forces applied to the boundary vanishes,
then ¢ = 0.

Note that if we substitute in (1.17) expressions for the stresses for
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an axisymmetric state in terms of a stress function Y¥(r, z) with the aid
of the expressions

i

a 02 ‘Z
O = 5z <“7 v— ar? : S0 =75 [(2“’)V‘*’— az;p]

3 14 a2
Geuz & vve'q)_T—"‘p‘ t‘”o———- (1—V)v¢-—'z_12‘p
or /, ar a
821{) 18y o
VW=sr+75 Tz

we obtain

P L 7 T R P I S oo

a(rf2+B(r)z+ 1) (1.20)

By substituting Expressions (1.20) into (1.17) we obtaln a system of
integral equations for determining the functions a(r), B(r), y(r).

~

In order to solve the axisymmetric problem it is necessary, with the
aid of relations (1.14) to (1.18), to find the boundary conditions of
the corresponding transformed plane state and, having solved the aux-~
iliary plane problem, to find the stresses and displacements for this
state of stress. We then substitute these stresses and displacements into
Expressions (1.19) to find the required axisymmetric state.

2. Solution of the axisymmetric problem for a volume of revolution
with the aid of analytic famctions. 3. A solid body. Let us suppose that
a cylinder of isotropic or transversely isotropic material with its axis
of elastic symmetry parallel to the z-axis is in a state of plane de-
formation which is symmetrical with respect to the yz-plane (Fig. 3a).
By rotating the contour of the cross-section of the cylinder about the
z-axls, we can form & volume of revolution, Initially, we make the
supposition that the contour of the cross-section is such that this
operation is possible, i.,e. we assume that the function r(z) is single-
valued for the half of the contour situated on one side of the z-axils.
We then superpose the states of stress and of strain for this body by
rotating them through an angle # about the z-axis. The components of the
transformed axisymmetric state so obtained can be found from the same
relations (1.3) to (1.5) as for an infinite plate.

We introduce into (1.4) the well-known expressions for the components
of the plane state in terms of two analytic functions. If the material
is isotropic

Oy + Sy =2{0 O+ D), Sty = Sep + 2Ty =2(0 Q4+ ¥ Q)
My +iw)=3—Me®)—lo @©—FQ C24)
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Here { = x + iz, { = z — iz, p are the Lamé parameters.

We now express the analytic functions ®(), ¥(), &), () in terms
of Cauchy integrals, change the order of integration and then integrate
with respect to x. By virtue of the symmetry of the plane state about
the y:z-plane, it follows that

W =D(—, QH=—9(1

where t= r+ iz, t=r— iz, tg= ry+ izg, t—o= ro—izg, T, 2, g 2z
are the coordinates of points on the contour of the meridian section of
the body. We make a cut in the plane of the complex variable close to
the boundary of the body, and instead of carrying out the integration
along its contour, we integrate along the boundaries of the cut. We note
that the root v (¢~ t ) (¢t + t;)] which appears in the integrands
changes sign on passing from one side of the cut to the other.

After transformation, the values of the components of the axisymmetric
state on the contour of the body can be expressed in terms of the bound-
ary values of two analytic functions in the following way:

—1,

- d
g, -+ Sy = — i S [2 (1 4+ 2v) (1) (t) — (t — 1 + to) [0} (t) —w (t)] -—T,__t-—_—::
o b Vit (t+17)

—1,
00— Gpom — S [2(1—2v) D (1) — (¢ — tot W)D'(H) — ¥ (DX
(to+t0)* %,

2 [2t — (to — V]2 — (to + 1o)?
X — dt
Vie—t)(+1

a _ d
se=—i {20+ =1+ DO @+ ¥ W) V(T—T)t—_"

—ly

) (¢ +t)
(2.2)
-, -
1 - 2t — ty - to
o = — = [(t — to+20) @ (&) + ¥ (1)) —— T2 di
to+ To ,S e V (t — 1) (¢ + to)
—I _
i - 2t—to+ ¢
g = — = [(B—4v)p (1) — —(t—to+ )9 ] —:_d‘
’ & (fotto) tS roy T Vi—to) @+
-1
w°=—_1_ S[(3—4’v)(p(t)+1p(t)+(t——to'i"t-o)q?'(l)] ._di____.
Py V (it —¢to) (¢ + o)

The integration is carried out over the positive branch of the root.

Note that when writing down Expressions (2.1), 1f we reverse the
positions of the real and imaginary axes, Expressions (2.2) assume a
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more symmetrical (and sometimes more convenient) form: —-;b is replaced
everywhere by toe

4. A mediom containing a cavity. Suppose that an elastic medium with
an axisymmetric cavity is in a axisymmetric state of stress (Filg. 3b).
By displacing the contour of the meridian section of the cavity along
the y-axis from y = — o to y = o, we form a cylindrical cavity (for this
operation to be possible we initially make the same requirement of the
contour of the meridian section of the cavity as that in subsection 3
for the contour of a section of a cylinder). For a medium with such a
cylindrical cavity we can superpose the states of stress and of strain
by displacing them along the y-axis from y = — = to y = e, The components
of the transformed plane state so obtained are given by the same expres-
sions (1.16) to (1.19) as for an infinite plate.

The derivatives with respect to z of the components of the plane state
which appear in (1.19) can be considered as components of some other
plane state, and with the aid of (2.1) they can be expressed in terms of
two anslytic functions. Note that, since the components oy, 6;y,...
characterize a plane state which is symmetrical with respéct to the y:-
plane, the components 9s.y/0x,...95,/3x characterize a plane state which
is skew-symmetrical about this plane. It follows that (¢} = — O(~-1),
(1) = Pp(—t). After carrying out transformations analogous to those de-
scribed in subsection 3, we obtain the values of the components of an
axisymmetric state on the contour of a body of isotropic material ex-
pressed in terms of the boundary values of two analytic functions. If we
equate to zero the vector sum of the forces applied to the contour of
the cavity, these expressions coincide with (2.2).

5. A body of arbitrary shape. The fact that two different superposi-
tions give analogous expressions for the components of an axisymmetric
state in terms of the boundary values of analytic functions leads us to
suppose that these expressions are sufficiently general, and that we can
discard the requirement introduced in subsections 3 and 4 that the func-
tion r{z) be single-valued for half the contour of the cross-section of
the body situated on one side of the :z-axis,

We will show that it is possible to make superpositions which are
slightly different from those described in subsections 3 and 4, but which
lead to analogous results when this requirement is removed. We shall
consider a body in a state of plane deformation as part of an elastic
medium subjected to loads ¢ and P applied on the contour r(z) and loads
Q(a, z) and P(a, z) distributed outside the meridian section of the body
(Fig. 4). (Note that with the given boundary conditions the loading is
many-valued.) By rotating these loads through an angle » about the z-
axis, we obtain an axisymmetric state of the body. As a result of rotat-
ing the loads of the plane state Q;, Q. Qa, z4). Py, Py, Pla, z4)
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acting on the segments BC and DE of the line AF in accordance with Ex-

pressions (1.1) and (1.2) with p > by > a,, we obtain axisymmetric loads
of the form

b,
g (p, z0) == Vv le 2 b \ (a z”) da
S L (2.3)
by
2aePy . 2boly I g 2aP (a, zg) dat

P, z0) = 2l SR
pVeP—ad pVpP—ad g pVei-—a

For certain relations between loads Q. Qg Pl' P2 and Q(a, zy) and
P(a, zj) we can obtain q(p, zg) = p(p, z5) = 0 forp > by > ap. It
follows that by rotation of the plane state of a2 medium we can obtain,
without the conditions imposed on the contour in subsections 3 and 4, an
axisymmetric state without any loads acting within the meridian section
of the body.

We shall ascertain whether or not we can in this case express the re-
lations (1.1) in the form (1.2).

Suppose that the integration of the components of the plane state
(Expressions (1.4)) is carried out along the line AF, the segments BC and
DE of which pass through the regions where the loads Q;, Q. Pl, P2,

Q(a, z5), P(a, z;) are applied (Fig. 4). We shall consider these loads
as body forces, Q. Q. Pl’ P2 being treated as loads Q; {8, 24},

Q@(c, Zg)s eees distributed along the line AF over segments of length d,
so that Q; = ¢, (a, zg)d, Qy = Qp{a, z3)d, ..., (later we shall let

d > 0). We express the components of the plane state caused by loads

Q= Q(,) and P= P({,) acting on DE in the form of integrals of the
stresses and displacements at the point £, which does not lie on the line
AF, caused by concentrated forces @ and P acting at the point §° on the
line AF, We must bear in mind that these stresse’s and displacements are
given by Expressions (2.1) and by the functions

PO =g =~ E=F," ‘F(C)‘”Sn(i—v)g—f, T Bl —v) GG
) -
¢€§)1~~—§;;(rz‘9“m(~“50
3 —4v) (P —iQ) P+ !
POy M) - B e o,

which are analytic everywhere except at the point { = go. In determining
the stresses as the poirt { approaches the point {* on the line AF we
make use of the formulas of Sokhotskii-~-Plemel’

tgg'z:rué Qu——C :t j(€)+ SCOM‘:* =4
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Substituting the stresses of the plane state so obtained into rela-
tions (1.1), we find the stresses for the axisymmetric state as the sum
of two terms corresponding to the first and second terms of the right-
hand side of Formula (2.4). If the loads of the plane state are such that
for p > b0 q(p . zo) = plp, zy) = 0, then by comparing Expressions (1.1)
and (1.5) we can see that the first terms in the expressions for G0,
Op + 0, T o &re zero. The corresponding term appearing in 0,0 — 0Ogo
is nonzero, and in order to determine it, it is necessary to make use of
the equations of equilibrium, of compatibility of strains and of unique-
ness of the displacements for an axisymmetric problem. We should point
out that the equations of equilibrium and of compatibility are satisfied
if the required term in 0,0~ 0z 1s of the form cf_g. The integrals
appearing on the right-hand sides of Expressions (2.4) and figuring here
in the sense of a principal value, together with the integrals appearing
in the expression for the displacements uy and‘w” can be represented by
analytic functions and lead to expressions analogous to (2.2).

The condition imposed on r(z) can therefore be removed.

Anslogous results can be obtained (by filling up a body containing
axisymmetric cavities to form an elastic medium and applying loads Q and
P on the contour r(z), and loads Q(a, z) and P(a, :z) outside a meridian
section of the body within the cavities) for superposition by means of a
linear displacement of the sxisymmetric state..

6. The equations of the problem. Substituting Expressions (2.2) into
the boundary condition of the problem (for the first basic problem, into
the relations Ro==a¢o sin a+r7,,° cos a, Zy = T COSa+7 ., sin a),
we obtain a set of two integral equations for the determination of the
boundary values of the two analytic functions. Having solved the equa-
tions and determined the analytic functions for these boundary values we
can find with the aid of Expressions (2.1) the components of an auxiliary
plane state, and then with the aid of (1.4) and (1.19), we can find the
components of the required axisymmetric state.
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