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A number of papers have been published on the question of finding rela- 
tions between the solutions of the plane and axisymmetric problems of the 
theory of elasticity and the use of these relations for solving axlsym- 
metric problems. 

In [ 1,2 1, Weber has suggested the use of integral transformations 
for the transfer from stress functions of the plane state to stress func- 
tions of an axisymmetric state, and vice versa (in these cases the bound- 
ary conditions are transformed; Weber. together with other authors, does 

g . 1. 

not Indicate what the boundary 
conditions of the initial 
state should be in order to 
obtain the given conditions 
for the state to which the 
transfer takes place). Trans- 
fer from a plane to an axisym- 
metric state of a space by 
means of superposition is 
illustrated In [ 3 1 , and 
Papkovich 14 1 has pointed 
out the analogy between the 
solutions of the plane and 
axisymmetrlc problems. In [ 5 
Mossakovskii has derived a 
solution to the axisymmetric 

‘I 

problem for a half-space by using analytic functions of a complex vari- 
able. Goletskii [6 1 has investigated the analogy between plane and axl- 
symmetric problems for regions bounded bs concentric circles and 
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spherical surfaces, respectively. In [7,8 I Polozhii considers the appli- 

cation of analytic functions to axisymmetric problems and establishes 

reversible integral transformations of axlsymmetric snd plane states of 

stress. ldustafaev 19 1 has investigated certain cases of transfer by 
means of the Weber method. Chemeris [lo 1 has obtained &n integral equa- 
tion with the aid of the results of Polombii for the axisymmetric prob- 

lem with given displacements. In [Ill, Belen'kit gives solutions to some 

axisymmetric problems with the aid of integral presentations and func- 

tions of a complex veriable. 

In the present paper relations are derived between the plane and sxi- 

symmetric states of stress for an infinite plate, and the state of plane 

stress is determined which after transfer gives an axisymmetric state 

with known boundary conditions. 

These relations enable the solution of axisymmetric problems for 

volumes of revolution of arbitrary shape to be reduced to the determina- 

tion of two analytic functions from two integral equations 112-14 3. 

We shall adopt the notation that all quantities referring to a state 

of plane stress will be distinguished by the suffix 11 and those referring 

to 8 state of axisymmetric stress by the suffix ', 

1. Aa infinite pl8tt. f. The relation betrran the plane and ariryr- 

metric status dctived by rotation of the plan4 rtata. Let US suppose 

that &n infinite plate of isotropic or transversely isotropic material 

with its axis of el8StiC symmetry psr&llel to the x-axis is in 8 state 
of deformation which is symmetrical with respect to the yz-plsne snd 

which is caused by the action of vertical and horizontal loads Q and P 

(Fig. 1. left). By rotation of the loads acting on the Plate through an 

angle R about the Z-sxfs, we obtain a transformed 8XiSDmR8tric state. 

It c&n be shown (for example, by replacing the loads Q and P by loads 

uniformly distributed over elements of ars8 of the type Shown hetched in 

Fig. 1, and taking into account the superposition which t8kes pl8ce with 

rotation of the loads) that in the transformed axisymmetric State loads 

(Figs. 2 and 2) 

4(P) = $--& P(P) = ,;&% (P>Q) 
(1.1) 

9 (P) = P (PI = 0 (p<a) 

will correspond to Q and P. which in the case of a plane state 8re dis- 

tributed slang two lines psrsllel to the y-8XiS. 

In the cage when Q = Q(a), P = P(a) for a0 < a < - and Q= P = 0 for 

0 < a < a@, we hsve 
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f-p boo 

’ 2QC4 
q(p) = 5 vm da* 

% 

P(P) = i 
2s (a) da 

_- 
;;, p ‘r/p”- a” 

for p < a0 
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q (PI = p (P) = 0 
Fig. 

The 00~~o~~~t~ Of the transformed &xis~metric state 
integrals 

Fig. 3. 

2. 

are given by the 

x 

6‘ = 
‘* s ((I x~C0sP$+6yp sWf3)dfj 

0 

x 
* 

%, = .. ($ ,, Co@ e + ax ,, sin2 8) c&l c 
0 

n 

3;, = 
c 
0” 

6, jf a 

7x 
* 

t,,e = 
s 

r,, ,, cos e de 

0 

Tr n 

u:=! U! ~09 ede, lv; = 
s 

qde 

0 0 

Here arll b, 4, Q b, 4, Q h 4, -&II (G 4, ~1, h 4, q(~, z) are the 
stresses and displacements. for the plane state, x = r cos 6. If the plate 
is isotropic oarlr =v (Use + uzZ/,), and if it is transversely isotropic 
Q, = t;ctl~ + vzza,,,, v, v_,, Y,, being Poisson’s ratios. 

Instead of integrating with respect to 8. let us nor integrate with 
respect to x. Relations (1.3) then become 
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If the effect of temperature has to be taken into account, the thermal 
expansions for the plane and axisymmetric states are related by the ex- 
pression 

rt r 

Here T,I (x, 4, T, (r, z) are the temperatures for the plane and axisym- 
metric states, k is the coefficient of linear expansion, which can be 
constant or can depend on the temperature. Analogous relations can be 
derived in other cases which admit the principle of superposition (for 
instance, dynamic problems). 

The relations derived above enable us to determine the loads (or 
other conditions on the surfaces of or within the plate) for the plane 
state, which, after transfer to the axisymmetric state by the method de- 
scribed, give the known loads (or other conditions) for the axisymmetric 
state. 

If, for example, the loads for the axisymmetric state q(p) and p@3 
are given, we can solve Equations (1.2) for the functions Q(u) and P(a) 

(by use of the substitutions a = p-’ and v = a‘-’ these equations become 
equations of the Abel type) and find the loads for the plane state, which 
after rotation give the known axisymmetric loads 

Q (4 = P(a) = 0 (0 < a < ad 

If the boundary conditions for the axisymmetria problem are given in 
terms of displacements, then by an analogous Process we find that 

In the case of a thermal expansion problem 

In order to solve an axisymmetric problem it is necessary to find 
from (1.6) to (1.8) the loads, displacements on the boundary or other 

(1.7) 
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conditions of the corresponding plane state, to solve an auxiliary plane 
problem and to find the stresses and displacements for this state. After 
substitution of these stresses and displacements into (1.4) and (1.5) we 
can determine the stresses and displacements for the required axisymmetric 
state. 

It should be noted that with the described method of superposition by 
rotation of the plane state, it is not possible to obtain any axisym- 
metric state, i.e. for certain forms of axisymmetric loading, Expressions 
(1.6) to (1.8) do not enable us to obtain a corresponding real plane 
state. If, for example, in the case of an axisymmetric state the loads P 
and Q are applied on a circle (Fig. I, right), it is not possible to de- 
termine directly the loads of the corresponding plane state by means of 
Expressions (1.6). 

In this case we must either make use of another superposition de- 
scribed in subsection 2, or we must perform certain additional operations. 
For example, let us consider the axisymmetric state set UP by loads q. 
and pe uniformly distributed within the limits from p = uu to =. With the 
aid of Expressions (1.6) we find that in order to obtain an axisymnetric 
state with such loading we must rotate the plane state caused by loads 

Q(a) =$-&, ‘x p(a)=$- -z-_sin-’ % 
0 i 

- +jF-&;, 1 bo < a < c-1 

Q (a) = P(U) = o bo > a > 0) (1.9) 

Having evaluated the components of this plane state, we transfer by 
means of Expressions (1.4) to an axisymmetric state (set UP by loads q. 
and pO distributed as indicated above). Differentiating with respect to 
oe the expressions for the components of the axisymmetric state so ob- 
tained, and replacing qO and pO by Q and P, we find an axisymmetric state 
caused by loads Q and P distributed over a circle of radius a,,. 

Note that another method can be used to find an axisymmetric state 
with the loads P or Q acting on one circle (Fig. 1, right). Suppose that 
oro(r, L, p), axo(r, 2, p), rrro (r, E, p), be0 (T, 2, p) are components of 
the required axisxmmetric state, p is the radius of the circle on which 
the loads are applied. The components of the exisymmetric state produced 
by loads q(p) and p(p) distributed according to (1.1) can be expressed 
in the form of the integrals appearing on the right-hand sides of Ex- 
pressions (1.10) and (1.11). On the other hand, the components of this 
state of stress o:o (t, E, a), ~V~o(r, z, a), ,.. can be obtained by 
rotation of the plane state as shown in Fig. 2-1 and evaluated from 
Formulas (1.4). We then obtain: 
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when the load Q is applied 

. . * , * . . . . . . . . . . * . . . . 

and when P is applied 

u;o (r, z, a) = ro,,o (r, z, I) 2aP dp 

a 
pJ/p"-aA 

(1.11) 
03 

a&, 2, 4 = 5 60" fr, z* p) 
2nP 
_ dp 

a ~j/p~-a~ 

Fig. 4. 

. . . . . . . . . . . . . . . . . . . . 

With the aid of the substitutions indicated earlier, Expressions 
(1.10) and (1.11) can be reduced to Abel equations, the solutions of 
which give: 

when load Q is applied 

a ao:. (7, 2, p) 
arO (r, z, a) = 2 & \ 

(1.12) 

* &/p27 
dp, ogo(r, z, 4 = 

and when P is applied 

2. The relation betoeen the plane and axisyrretric states derived by 

linear displacencnt of the axisynretric state. Suppose that an infinite 
plate of isotropic or transversely isotropic material with the elastic 
axis parallel to the z-axis is in an axisymmetric state caused by the 
action of vertical and radial loads Q and P (Fig. 1, right, and Fig. 
2-4). By displacing the loads acting on the plate along the y-axis from 
y=- PO to y = 00 we obtain a certain transformed plane state. 

It can be shown (for example, by replacing loads Q and P by loads uni- 
formly distributed over elements of area of the type shown hatched in 
Fig. 1. and taking into account the superposition which takes place with 
displacement of the loads) that in the transformed plane state the loads 
(Fig. 2-2) 
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will correspond to loads Q and P, which in the axisymmetric state act on 

one circle. 

In the case when Q = Q(s), P = P(a) for 0 < tl < c and Q = P = 0 for 

-> a> c 

p (q) = \ 2’lP(a) da 
x lfa2--712 

h d 4 

(1.15) 
q fq) = P (rl) = 0 (tl > cl 

The components of the transformed plane state are given by the inte- 
gral s 

CC ar (1.16) 

d XII 
*=: 

s 
(o,. COST 8 + aJeO sin2 0) dy, cly ,, * = 

s 
(a,, sin26 + oeO cos20) dy, 

--co --co 
cm co 03 00 

uz II 
*=e s b,o dy . r,, ,, * = s r,+, cos@dy, u ,! * = 

s 
u, cos0dy, w,,* = 

s w, dy 
--co --co -03 --m 

We replace the integrals with respect to y within the limits y = - = 
and y = oo by double integrals with respect to y within the limits y = 0 
and y = CQ, and transfer from integration with respect to y to integra- 
tion with respect to r. (The expression for d; can be found by partial 
differentiation of the expression x2 i- y2 = r , Sin 8 = y/r, eos Q= x/r) 

00 co 

u xu * -%I1 *=2 (u 
s P - $0) 

2x2 - r2 dr 
rJfre ’ 

(Tz II 
*:-2 

s 
x 3: 

(a 05 

0 xii* + %Yjl* = 

m 00 

up2 u, 
s 

xdr 
x yCm* 

(1.17) 

If changes in temperature must be taken into account the thermal ex- 
pansions for the axfsymmetric and plane states are related by the expres- 
sion 

DC) 
kT *= s kT,dy = 2$,,, r dr 

I 
-r/F-z? 

(1.18) 
--co 1 
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Analogous relations can be obtained for other cases which admit the 
principle of superposition. 

We will solve the first of Equations (1.17) for the components of the 
axisymmetric state. we set g = r*, h = x2, multiply both sides of the 
equation by (h - H) -‘12dh, integrate them from H to B* and. making use 
of Diriohfet’s formula, change the order of integration 

Returning now to the previous variables and differentiating both sides 
with respect to r, carrying out the integratfon bs parts and letting 
B + =, we find that 

The first term on the right-hand side can be expressed in the form 

as 2300 

After solving in an analogous wag the remaining equations of (1.17) 
and taking into account the manner in which the stresses decrease at in- 
finity, we find that 

If the vector sum of the forces applied to the boundary vanishes, 
then c = 0. 

Note that if we substitute in (1.17) expressions for the stresses for 
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an arissmmetric state in terms of a stress function @r, z) with the aid 
of the expressions 

we obtain 

BY substituting Expressions (1.20) Into (I. 17) we obtain a system of 
integral equations for determining the functions a(r), p(r), y(r). 

In order to solve the axfsymmetric problem it is necessary, with the 
aid of relations ft.141 to (1.18). to find the boundary conditions of 
the corresponding transformed plane state and, having solved the aux- 
iliary plane problem, to find the stresses and displacements for this 
state of stress. We then substitute these stresses and displacements into 
Expressions (1.19) to find the required axlsymmetric state. 

2. Solution af the axisymmetric *roblen for a volume of revollntioa 
rftb the 8id af analytic Ymctions. 3. A solid body. Let us suppose that 
a cylinder of isotropic or transversely Isotropic material with its axis 
of elastic symmetry parallel to the z-axis Is in a state of plane de- 
formation which is symmetrical with respect to the yz-plane (Fig. 3a). 
By rotating the contour of the cross-section of the cylinder about the 
z-axis, we can form a volume of revolution. Initially, we make the 
supposition that the contour of the cross-section is such that this 
operation Is possible. i.e. we assume that the function r(z) is slngle- 
valued for the half of the contour situated on one side of the z-axis. 
We then superpose the states of stress and of strain for this body by 
rotating them through an angle R about the z-axis. The components of the 
transformed axisgmmetric state so obtained can be found from the 8ame 
relations (1.3) to (1.5) as for an infinite glate. 

We introduce into (1.4) the well-known expressions for the components 
of the plane state in terms of two analytic fun&ions. If the material 
is isotropic 
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- 
Here [ = x + iz, 6 = x - iz. p are the Lame’ 

We now express the analytic functions dV[), 

parameters. 

Y(O. +(O, +(O in terms 
of Cauchy integrals. change the order of integration and then integrate 
with respect to X. By virtue of the symmetry of the plane state about 
the yz-plane, it follows that 

@ (t) = a) (- i), cp (t) = -G) 

where t = r + iz, t= r - iz, te = rO + iee, Fe = re- ize, r, z, re, z. 
are the coordinates of polnts on the contour of the meridian section of 
the body. We make a cut in the plane of the complex variable close to 
the boundary of the body, and instead of carrying out the integration 
along its contour, we integrate along the boundaries of the cut. We note 
that the root d/r (t - t o) (t + to) 1 which appears in the integrands 
changes sign on passing from one side of the cut to the other. 

After transformation, the values of the components of the axisymmetric 
state on the contour of the body can be expressed in terms of the bound- 
ary values of two analytic functions in the following nay: 

--to 
(Jr0 + 60, = - i s [Z (1 + 2v) @ (t) - (t - to + ‘50) w (t) - Y (01 

10 
l/(l-mt;(l+?,oj 

-1. 

(Jr0 
i 

- oeo= -- - s (to fTo12 f* 
[2 (1 - 2v) 0 (t) - (t - to+ to)@,‘(t) - y Wlx 

x 2 [2t - (to - &~I2 - (lo + 6)” dt 

V&Z-_ 

$0 = - I 3 [2@ (t) t (t - to •t 6, w w + y WI . 
0 

(2.2) 

1 
-T, 

5 PP = 
_- 

to +io s IO - to + to, @’ (4 + Y (41 
2t----t,+70 dt 

f. J(t - to) (t + G) 

i 
-r, 

a =- 0 s 2~ (to+% tO 
[(3-4v)(p(t)-q(t)- (t - to + r,)@(t)] 2t--n+to dt 

l/e - to) 0 + io) 

-i; 
1 

s 
I(3 - 49 cp (t) + 4 0) + It - to + to, cp’ WI 

dt 
wo=-- 

2p t. v-0 -$o) (t + 64 

The integration is carried out over the positive branch of the root. 

Note that when writing down Expressions (2.1), if we reverse the 
positions of the real and imaginary axes, Expressions (2.2) assume a 
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more symmetrical (and sometimes more convenient) form: - FO is replaced 
everywhere by TO, 

4. A mdiun containing a cavity. Suppose that an elastic medium with 
an axisymmetric cavity is in a axisymmetrie state of stress (Fig. 3b). 
By displacing the contour of the meridian section of the cavity along 
the y-axis from y = - m to y = 00, we form a cylindrical cavity (for this 
operation to be possible we initially make the same requirement of the 
contour of the meridian section of the cavity as that in subsection 3 
for the contour of a section of a cylinder). For a medium with such a 
cylindrical cavity we can superpose the states of stress and of strain 
by displacing them along the y-axis from y = - 8 to y = oo. The components 
of the transformed plane state so obtained are given by the same expres- 
sions (1.16) to (1.19) as for an infinite plate. 

The derivatives with respect to x of the components of the plane state 
which appear in (1.19) can be considered as cromponents of some other 
plane state, and with the aid of (2.1) they can be expressed in terms of 
two analytic functions. Note that. since the components Qxll, %I[ t**. 
cbaraoterize a plane state which is symmetrical with respe’ct to the ys- 

plane, the components &,,I /SC,. . , Lb, n/ax characterize a plane state which 
is skew-symmetrical about this plane. It follows that Q(t) = - a(- i), 
#t(t) = #$-,‘i,. After carrying out transformations analogous to those de- 
scribed in subsection 3. we obtain the values of the components of an 
axisymmetric state on the contour of a body of isotropic material ex- 
pressed in terms of the boundary values of two analytic functions. If we 

equate to zero the veutor sum of the forces applied to the contour of 
the cavity, these expressions coincide with (2.2). 

5. A body of arbitrary uhapc. The fact that two different superposi- 
tions give analogous expressions for the components of an axleysmetrio 
state in terms of the boundary values of analytic functions leads us to 
suppose that these expressions are sufficiently general, and that we oan 
discard the requirement introduced in subsections 3 and 4 that the func- 
tion r(z) be single-vslued for half the contour of the cross-section of 
the body situated on one side of the z-axis, 

We will show that it is possible to make superpositions which are 
slightly different from those described in aubsectlons 3 and 4, but whiah 
lead to analogous results when this reaairement Is removed. We shall 
consider a body In a state of plane deformation as part of an elastic 
medlue subjected to loads Q and P applied on the contour r(z) and loads 

Q(a, I) and P(a, I) distributed oatsfde the meridian section of the body 
(Fig. 4). (Note that with the given boundary conditions the loading is 
many-valued.) By rotating these loads through an angle n about the t- 
axis. we obtain an axieJlametrfo state of the body. As a result of rotat- 
ing the loads of the 01ane state Q1, Qt, Q(a, zbjt P,, P,, P(a, q,) 
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acting on the segments BC aad DE of the line AF in accordance with Ex- 
pressions (1.1) and (1.2) with p > be > me, we obtain axisyametric loads 
of the form 

For certain relations between loads QI, Qz, P,, Pz and Q(a, x:,) and 

&a, J*) we can obtain q@, 2,) = p@, 2,) = 0 for p > b. > ao. It 
follows that by rotation of the plane state of a medium we can obtain, 
without the conditions imposed on the contour in subsections 3 and 4. an 
axisymmetric state without any loads acting within the meridian section 
of the body. 

We shall ascertain whether or not we can in this case express the re- 
lations (1. I) in the form (1.2). 

Suppose that the integration of the components of the plane state 
(Expressions (1.4)) is carried out along the line AF, the segments BC and 
DE of which pass through the regions where the loads Q1, Q2, P,, P,, 

Q(a, 2,). P(a, t,) are applied (Fig. 4). We shall consider these loads 
as body forces, Ql, Q2, P,, P, being treated as loads Q1 (0, z,) , 

Q2(a, z,), . . . . distributed along the line AF over segments of length d, 

SO that Ql = Ql(a, t,)d, Q2 = Q,(a, z,)d. . . . . (later we shall let 
d+ 0). We express the components of the plane state caused by loads 
Q = Q(<,) and P = P(<,) acting on DE in the form of integrals of the 
stresses and displacements at the point i. which does not lie on the line 
AF. caused by concentrated forces Q and P acting at the point <O on the 
line AF. Be must bear in mind that these stresse’s and displacements are 
given by Expressions (2.1) and by the functions 

P+iQ 1 
+((5)=--gq-_Y)t;-- 

3 - 4v P--iQ fa(P+iQ) 1 --. -- 
y (<) = 83~ (1 - v) < - <,, 8n (1 - v) (6 --- &,)’ 

P I-iQ 
9 (5) 1 -- &(i ._ v) In (5 - j,) 

Ip (O- (3--~v)(P-iQf In(c__I;o) ,_ xo &;L.JL__u 
8n (1 -- Y) 

which are analytic everywhere except at the point [ = CO. In determining 
the stresses as the point 4 approaches the point e on the line AF we 
make use of the formulas of ~khotskii-Plemel’ 

(2.4) 
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Substituting the stresses of the plane state so obtained into refa- 

tions (1.11, we find the stresses for the axisymaetric stste as the sum 

of two terms corresponding to the first and second terms of the right- 

hand side of Formula (2.4). If the losds of the Plane stste are such that 

for p > be q(p, 2,) = p(p, lo) = 0, then by comparing Expressions (1.1) 

and (1.5) we c8n see that the first terms in the expressions for uzo, 

ffp + u@J* rrJJ are zero. The corresponding term 8PPearing in up - ueo 

is nonsero, and in order to determine it, it is necesssry to make use of 

the equations of equilibrium, of compatibility of strains and of unique- 

ness of the displacements for an axisymmetric problem. We should point 

out that the equations of equilibrium and of compatibility are satisfied 

if the required term in uro - ~$0 is of the form cr-3. The integrals 

appearing on the right-hand sides of Expressions (2.4) 8nd figuring here 

in the sense of 8 principal value, together with the integrals appearing 

in the expression for the displacements u,, 8nd ,W I1 cm be represented by 

analytic functions and lead to expressions analogous to (2.2). 

The condition imposed on r(z) can therefore be removed. 

Analogous results c8n be obtained (by filling UP 8 body containing 

axisymmetric cavities to form 871 elastic medium and applying loads Q and 

P on the contour r(z), snd loads Q(o, Z) 8nd P(a, Z) outside a meridian 

section of the body within the cavities) for superposition by means of a 

1 inear displacement of the axisymmetrfc state., 

6. The cquotions of the problsr. substituting Expressions (2.2) into 

the boundary condition of the problem (for the first basic problem, into 

the relations RO=uTo sin a+r,,o cos a. Z,, = Or0 Cos a + Cr10 sin a), 

we obtain 8 set of two integral eqU8tiOnS for the determination of the 

boundary values of the two analytic functions. Having solved the equs- 

tions and determined the analytic functions for these boundary values we 

can find with the aid of Expressions (2.1) the components of an auxiliary 

plane state, 8nd then with the aid of (1.4) 8nd (1.19). we can find the 

components of the required axisymmetric state. 
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